
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 52:1339–1360
Published online 10 May 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1231

Karhunen–Loeve representations of turbulent channel �ows
using the method of snapshots¶

R. A. Handler1;∗;†, K. D. Housiadas2;‡ and A. N. Beris3;§

1Naval Research Laboratory; Washington; DC 20375; U.S.A.
2Department of Mathematics; University of the Aegean; Samos; Greece

3Department of Chemical Engineering; University of Delaware; Newark; DE 19716; U.S.A.

SUMMARY

For three-dimensional �ows with one inhomogeneous spatial coordinate and two periodic directions, the
Karhunen–Loeve procedure is typically formulated as a spatial eigenvalue problem. This is normally
referred to as the direct method (DM). Here we derive an equivalent formulation in which the eigenvalue
problem is formulated in the temporal coordinate. It is shown that this so-called method of snapshots
(MOS) has some numerical advantages when compared to the DM. In particular, the MOS can be
formulated purely as a matrix composed of scalars, thus avoiding the need to construct a matrix of
matrices as in the DM. In addition, the MOS avoids the need for so-called weight functions, which
emerge in the DM as a result of the non-uniform grid typically employed in the inhomogeneous
direction. The avoidance of such weight functions, which may exhibit singular behaviour, guarantees
satisfaction of the boundary conditions. The MOS is applied to data sets recently obtained from the direct
simulation of turbulence in a channel in which viscoelasticity is imparted to the �uid using a Giesekus
model. The analysis reveals a steep drop in the dimensionality of the turbulence as viscoelasticity is
increased. This is consistent with the results that have been obtained with other viscoelastic models,
thus revealing an essential generic feature of polymer-induced drag reduced turbulent �ows. Published
in 2006 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Karhunen–Loeve method (KL) of analysis has been applied extensively to complex data
sets in a wide variety of �elds. It has been found particularly useful in meteorology and
oceanography [1] where it is referred to as principal component analysis, but has also been
used more recently in the analysis of complex three-dimensional turbulent �ows. In the case
of turbulence, the KL method has been used to explore the nature of coherent structures
embedded in seemingly chaotic �ows [2–5]. It has also found use in the development of
low-order dynamical system models [6–8] for these �ows and in exploring non-linear energy
dynamics [9].
Channel �ow turbulence (i.e. �ow between two parallel plates driven by a constant pressure

gradient) has undergone intense study in recent years since it has been interpreted as a model
for more complex wall-bounded turbulent boundary layer �ows. The simplicity of the channel
geometry allows for direct numerical simulations (DNS), resulting in the creation of very large
data sets which require interrogation. The standard formulation of the KL method for these
�ows [10], often referred to as the direct method (DM), involves an eigenvalue decomposition
of the Reynolds stress correlation matrix. Indeed, this approach has been used exclusively
to date to solve problems of the channel �ow type. However, as pointed out by Sirovich
and Kirby [11], an alternative approach called the method of snapshots (MOS) has some
advantages in circumstances where the direct approach is computationally infeasible. In this
paper, we formulate the MOS for the case of channel �ow and demonstrate that, although the
DM is generally tractable in this circumstance, the MOS a�ords several useful computational
advantages which will be described in detail below. The MOS was then applied to the case of
the fully developed turbulent �ow of a viscoelastic �uid. The data sets used for the analysis
were obtained from a series of direct numerical simulations in which a Giesekus model
of viscoelasticity was employed. It is shown clearly that viscoelasticity profoundly reduces
the dimensionality of the turbulence. This �nding corroborates earlier work [12, 13] using
a di�erent viscoelastic model, the �nite-extensibility non-linear extensible with the Peterlin
approximation dumbbell (FENE-P), which is a standard model for dilute polymer solutions
[14], the Giesekus model being a better model for semi-dilute and concentrated systems
[14, 15]. This result provides further evidence of the importance of large coherent structures
in these drag reduced �ows and motivates further work on applying the KL method to these
cases, including possibly the development of reduced dimensionality models for viscoelastic
turbulence.

2. FORMULATION OF THE KARHUNEN–LOEVE PROBLEM FOR
A THREE-DIMENSIONAL FLOW

2.1. The direct method

For purposes of completeness, here we repeat the formulation of the DM for three-dimensional
�ow in a channel with two periodic directions and one inhomogeneous direction. We note,
however, that these techniques can easily be extended to cases of two or three inhomogeneous
directions. In the case of interest here, the velocity �eld is given by uj(x1; x2; x3; t), j=1; 2; 3.
Here, the subscripts 1 and 3 designate the homogeneous directions which, for channel �ow,
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KL REPRESENTATIONS OF TURBULENT CHANNEL FLOWS 1341

are the streamwise (i.e. the direction in which the driving pressure gradient is applied) and
spanwise directions, respectively, the subscript 2 designates the vertical, or wall-normal co-
ordinate, and t is time. We may alternately use the notation x, y, and z for the streamwise,
spanwise, and wall-normal coordinates, respectively, and u, v, and w for the streamwise, wall-
normal, and spanwise velocity components. The velocity �eld can then be represented [16] as

uj(x; y; z; t)=
N=2−1∑
n=−N=2

M=2−1∑
m=−M=2

Unm
j (y; t)e

iknxeikmz (1)

where kn=2�n=Lx and km=2�m=Lz are the wavenumbers in the streamwise and spanwise
directions, respectively, Lx and Lz are the streamwise and spanwise domain lengths, i =

√−1,
and Unm

j (y; t) are the Fourier coe�cients given by

Unm
j (y; t)=

1
LxLz

∫ Lx=2

−Lx=2

∫ Lz=2

−Lz=2
uj(x; y; z; t)e−iknxe−ikmz dx dz (2)

The �ows considered here are incompressible:

@uj
@xj

=0 (3)

and satisfy no-slip boundary conditions:

uj(x; Ly=2; z)= uj(x;−Ly=2; z)=0; j=1; 2; 3 (4)

where Ly is the domain length in the vertical direction. In (3) and in all subsequent expres-
sions, a summation is implied on the repeated index j but never on any other repeated index
unless otherwise stated.
It should be noted that other boundary conditions are of interest such as the so-called �at

free surface condition:

@u
@y
=
@w
@y
= v=0 (5)

applied on y=Ly [17–20]. Other conditions can been used such as those associated with a
surfactant covered boundary [21–23], or the more general interfacial conditions between two
�uid media [24]. If properly formulated, the KL procedure must preserve incompressibility
and any boundary conditions such as those mentioned above.
The objective of the procedure is to �nd functions �nmqj (y) which maximize the quantity:

�nmq=

〈∣∣∣∣∣ 1Ly
∫ Ly=2

−Ly=2
Unm
j (y; t)�

nmq
j (y) dy

∣∣∣∣∣
2〉

(6)

subject to the constraint:

1
Ly

∫ Ly=2

−Ly=2
�nmqj (y)�nmq

′
j (y) dy= �qq′ (7)

where 〈· · ·〉= 1
T

∫ T
0 (· · ·) dt, T is a suitably long time interval over which averages are taken,

and conjugation is designated by an overbar. The integer index q, the so-called quantum
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index, is introduced in anticipation of an eigenvalue problem which gives rise to a spec-
trum of eigenfunctions for each wavenumber index pair (n;m). The eigenfunctions �nmqj , and
eigenvalues �nmq, are solutions to the integral equation [25]:

1
Ly

∫ Ly=2

−Ly=2
Rnmij (y; y

′)�nmqj (y′) dy′= �nmq�nmqi (y) (8)

where the Reynolds stress tensor is given by

Rnmij (y; y
′)=

〈
Unm
i (y; t)Unm

j (y
′; t)

〉
(9)

It can then be shown that the eigenvalues are real and positive, that the eigenfunctions satisfy
incompressibility:

@�nmqj

@xj
=0 (10)

and that the eigenfunctions satisfy the boundary conditions, which for no-slip boundaries are

�nmqj (Ly=2)=�
nmq
j (−Ly=2)=0 (11)

The original Fourier coe�cients can then be represented optimally as de�ned by (6) so that

Unm
j (y; t)=

∑
q
anmq(t)�nmqj (y) (12)

Substitution of (12) into (1) then gives an optimal representation of the three-dimensional
velocity �eld. It should be noted that the KL eigenfunctions reduce to sinusoids in the �ow
directions exhibiting statistical homogeneity [10]. It follows that for channel �ow, the Fourier
representation given by (1) is the appropriate one in the x and z directions.

2.2. The method of snapshots for three-dimensional �ows

An alternative procedure called the MOS is derived by changing the order of integration in
(8) and (9) to give〈

Unm
i (y; t)

1
Ly

∫ Ly=2

−Ly=2
Unm
j (y

′; t)�nmqj (y′) dy′
〉
= �nmq�nmqi (y) (13)

We then de�ne the coe�cients anmq by

anmq(t)=
1
Ly

∫ Ly=2

−Ly=2
Unm
j (y

′; t)�nmqj (y′) dy′ (14)

so that the eigenfunctions are given by

�nmqi (y)=
1
�nmq

〈anmq(t)Unm
i (y; t)〉 (15)

Changing i to j, y to y′, and t to t′ in (15) and substituting this back into (14) gives

〈Cnm(t; t′)anmq(t′)〉t′ = �nmqanmq(t) (16)
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where

Cnm(t; t′)=
1
Ly

∫ Ly=2

−Ly=2
Unm
j (y

′; t′)Unm
j (y

′; t) dy′ (17)

and 〈· · ·〉t′ indicates integration over t′ and division by T . Finally, it can easily be shown
that requiring the spatial eigenfunctions to be orthonormal as de�ned by (7) is equivalent to
requiring the time-dependent eigenfunctions, anmq, to obey〈

anmq(t)anmq′(t)
〉
= �nmq�qq′ (18)

When the constraint given by (18) is imposed, the MOS is exactly equivalent to the DM.

2.3. Summary

It is useful to give a brief summary of these two formulations. In the so-called DM we form
a spatial correlation matrix Rnmij (y; y

′) whose associated spatial eigenfunctions, �nmqj (y), are
solved for directly by means of (8). On the other hand, in the MOS, the spatial eigenfunc-
tions are determined indirectly by �rst determining temporal eigenfunctions, anmq, via (16).
The spatial eigenfunctions are then determined as a weighted sum of the original data (the
snapshots) as in (15), hence the name method of snapshots. It is also important to note that
while the DM requires the construction of a matrix of matrices (Rnmij ) the MOS has inherently
scalar components, since it is clear that we form the dot product Unm

j Unm
j in (17). We point

out the implications of this below.
Merely for purposes of consistency with the direct problem, we rede�ne the MOS as

follows: 〈
Cnm(t; t′)bnmq(t′)

〉
t′
= �nmqbnmq(t) (19)

so that bnmq= anmq. With this de�nition of the MOS, integration over t′ is associated with
the variable Unm

j (y; t
′), which is analogous to the DM where integration over y′ is associated

with the variable Unm
j (y

′; t). Then the spatial eigenfunctions are obtained from

�nmqj (y)=
1
�nmq

〈
bnmq(t)Unm

j (y; t)
〉

(20)

2.4. The discrete problem

In formulating a discrete system for the integral equations derived above, we note that in
general, non-uniform grids are used in the wall-normal (y) direction. In our codes, since we
use Chebyshev polynomials (Tp(y=�)) to represent the velocity �eld in this direction, optimal
grid locations in the vertical direction are given by yl= � cos(�l); l=0; : : : ; L, where �=Ly=2,
and �l=�l=L. This choice for � yields the desired range (−16y=�6 1) for the argument of
the Chebyshev polynomials.
To form the discrete problem for the DM we �rst apply the transformation y= � cos(�)

to (8). In addition, to preserve the Hermitian nature of the kernel we introduce weights
given by

w(�)=
√
sin(�)=2 (21)

Published in 2006 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1339–1360



1344 R. A. HANDLER, K. D. HOUSIADAS AND A. N. BERIS

The resultant problem then becomes∫ �

0
[w(�)Rnmij (�; �

′)w(�′)]�nmqj (�′)w(�′) d�′= �nmq�nmqi (�)w(�) (22)

with the constraint ∫ �

0
�nmqj (�)�nmq

′
j (�)w2(�) d�= �qq′ (23)

where we use the simpli�ed notation Rnmij (�; �
′)≡Rnmij (� cos(�); � cos(�′)), and �nmqi (�)≡

�nmqi (� cos(�)). The discrete problem then becomes

L∑
l′=0
Knmij (l; l

′)�nmqj (l′)��= �nmq�nmqi (l) (24)

with the constraint

L∑
l′=0
�nmqj (l)�nmq

′
j (l)= �qq′ (25)

where ��=�=L.
Here we have used the simpli�ed notation Knmij (l; l

′)≡Knmij (� cos(�l); � cos(�l′)),
�nmqj (l)≡�nmqj (� cos(�l)), and w(l)≡w(�l), so that

Knmij (l; l
′)=w(l)Rnmij (l; l

′)w(l′) (26)

and

�nmqj (l)=�nmqj (l)w(l)
√
�� (27)

The desired incompressible eigenfunctions (�nmqj ) can then be obtained using (27) by dividing
the auxiliary eigenfunctions (�nmqj ) by the weight function. As we note below, this can lead
to issues with respect to the enforcement of the boundary conditions, other than those of the
no-slip type, since division by the weight functions becomes unde�ned at the boundaries.
In many cases, the �ow may have particular symmetries which may be used to increase

the sample size. In the case of channel �ow, the total number of realizations can be increased
by a factor of four by using the well-known symmetries of the �ow. The full set of �ow
realizations including symmetries are given by (see Reference [10])

u0j ≡ (u(x; y; z; t); v(x; y; z; t); w(x; y; z; t))
u1j ≡ (u(x;−y; z; t);−v(x;−y; z; t); w(x;−y; z; t))
u2j ≡ (u(x; y;−z; t); v(x; y;−z; t);−w(x; y;−z; t))
u3j ≡ (u(x;−y;−z; t);−v(x;−y;−z; t);−w(x;−y;−z; t))

(28)

The corresponding Fourier transforms of the above four �ows are then de�ned as
Unms
i (y; t), s=0; 1; 2; 3. These �ows can then be used to form a new spatial correlation matrix
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given by

Rnmij (y; y
′)=

〈
1

Nsym + 1

Nsym∑
s=0
Unms
i (y; t)Unms

j (y′; t)

〉
(29)

where Nsym, the number of �ow symmetries, is three for channel �ow.
The MOS can be discretized by �rst computing the complex conjugate of the integrand in

(17) as follows:

Qnm(y; t; t′)=Unm
j (y; t)Unm

j (y; t
′) (30)

If the velocity �eld is expressed as a sum of Chebyshev polynomials, Tp, it is natural also
to expand the integrand as

Qnm(y; t; t′)=
P∑
p=0
qnmp (t; t

′)Tp(y=�) (31)

The temporal correlation matrix can then be computed exactly as follows:

Cnm(t; t′)=
1
Ly

∫ Ly=2

−Ly=2

P∑
p=0
qnmp (t; t

′)Tp(y=�) dy (32)

By changing variables of integration (y=y=�) and noting that
∫ 1

−1 Tp(y) dy=2=(1− p2) for
even values of p, (32) becomes

Cnm(t; t′)=
P∑
p=0
p even

qnmp (t; t
′)

1− p2 (33)

Thus, once the Chebyshev coe�cients of qnmp are computed (which can be performed e�ciently
using fast Fourier transform methods [16]), Cnm can be computed using (33). The discrete
form of the integral equation given by (19) can now be expressed as:

1
Nr

Nr−1∑
s′=0

Cnm(ts; ts′)�nmq(ts′)= �nmq�nmq(ts) (34)

where we have converted the time integral in (19) to a sum over a sequence of Nr �ow
realizations (snapshots) obtained at equally spaced time intervals. Since we may wish to add
�ow symmetries to the ensemble of �ow realizations as described by (28), we de�ne Nr as the
total number of available realizations including �ow symmetries so that Nr =M�ow × (Nsym + 1)
where M�ow is the number of realizations of the �ow available without employing symmetries
(e.g. u0j in (28)). Alternatively, the summation in (34) can be interpreted as an expectation
over a number of realizations preferably taken over time intervals, �t, such that the time be-
tween realizations �t�Teddy where Teddy is a typical large eddy turnover time for the particular
turbulent �ow under consideration.
Regardless of whether the DM or the MOS is used, the number of non-trivial eigenvalues

and eigenfunctions will the lesser of 3×Ngrid or M�ow × (Nsym + 1) per wavenumber index
pair (n;m), where Ngrid is the number of grid nodes in y, and the factor of three applies in
the case of the three-dimensional �ows under consideration here. Therefore, as pointed out
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1346 R. A. HANDLER, K. D. HOUSIADAS AND A. N. BERIS

by Sirovich and Kirby [11], in cases where the number of grid nodes (or pixels) is very
large compared with the number of snapshots, the MOS may be the only method that is
computationally feasible. We note that these estimates regarding the number of non-trivial
modes may be reduced due to the imposition of the incompressibility constraint.

2.5. Scaling of the eigenfunctions, and the addition of symmetries in the MOS

The eigenvectors �nmq(ts), de�ned by (34), returned by standard solvers such as those in
EISPACK will then be orthonormal in the sense that:

Nr−1∑
s=0
�nmq(ts)anmq

′(ts)= �qq′ (35)

but in order to generate spatial eigenfunctions, �nmqj , as de�ned in (7), we need eigenvectors
�nmq such that

1
Nr

Nr−1∑
s=0
�nmq(ts)�nmq

′(ts)= �nmq�qq′ (36)

Therefore, we choose

�nmq(ts)= �nmq(ts)
√
Nr�nmq (37)

so that the eigenfunctions given by

�nmqj (y)=
1√
�nmqNr

Nr−1∑
s=0

�nmq(ts)Unm
j (ts; y) (38)

are orthonormal as de�ned by (7).
It is evident from the detailed description of the discrete problems described above that

the MOS formulation a�ords some advantages as compared to the DM. First, the correlation
matrix Cnm has purely scalar components compared to the tensor nature of Rij needed for the
DM. More importantly, the weight functions, which are required in the DM, are completely
avoided in the MOS. These facts have two main consequences: (1) The construction of Cnm

does not require the assembly of a matrix of matrices as in the DM, and (2) In the MOS no
issues arise with regard to the singularity of the weight functions at the boundaries. In the
MOS, since weights are entirely avoided in the construction of Cnm, any boundary conditions
such as those enumerated in Section 2 (not just no-slip) will be automatically preserved. This
is true by virtue of (38), which shows that the eigenfunctions are simply linearly weighted
sums of the individual �ows.
As alluded to above, it is straightforward to incorporate �ow symmetries into the MOS.

This proceeds by simply substituting for the �eld Unm
j , the �eld V

nm
j in the computation of

Cnm, where Vnmj is de�ned as

Vnmj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Unm0
j (y; tk); k=0; 1; : : : ; M�ow − 1
Unm1
j (y; tk); k=M�ow : : : 2×M�ow − 1
Unm2
j (y; tk); k=2×M�ow : : : 3×M�ow − 1
Unm3
j (y; tk); k=3×M�ow : : : 4×M�ow − 1

(39)

Published in 2006 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1339–1360



KL REPRESENTATIONS OF TURBULENT CHANNEL FLOWS 1347

where Unms
j ; s=0; 1; 2; 3, are the Fourier transforms of the �elds formed by the symmetries

de�ned above in (28).

3. FORMULATION OF THE GIESEKUS MODEL AND DESCRIPTION
OF THE DIRECT SIMULATIONS

The exploration of the dynamics and physics underlying the turbulent �ow of dilute polymeric
solutions has seen renewed interest in the last decade. This has been principally due to a
desire to understand more fully the phenomenon of drag reduction in these �ows, otherwise
known as the Toms e�ect [26]. Signi�cant progress has been made in this area due to the
development of accurate and e�cient numerical algorithms [27], and also to the development
of �rst-principles micromechanical models for polymeric solutions [14, 15]. In general, models
which are valid for dilute solutions such as the FENE-P (Finitely extensible non-linear elastic
Peterlin) model have been used in the past [28–31]. It was determined in those works that
the most crucial viscoelastic property that appears to be responsible for drag reduction is the
increased resistance to extensional deformation provided by the polymer molecules. A measure
of that increased resistance is the extensional viscosity ratio which, for the FENE-P model,
increases from its Newtonian value (of 3) to a limiting value proportional to L2, where L is
the molecular extensibility parameter [15].
Here, we have gone a step further and have employed the Giesekus model [32], which

has the capability of modelling non-dilute solutions by accommodating concentration e�ects
through the assumption of an anisotropic mobility, � [14, 15]. When �=0 the anisotropicity
disappears, while the largest physically meaningful value for that parameter is 1, with typical
values ranging from very close to zero (for dilute and semi-dilute polymer systems) to 0.15 for
concentrated solutions and melts [15]. In comparison to the FENE-P results, it is interesting
to note here that the extensional viscosity ratio for the Giesekus model also increases with
increasing extensional rate in extensional �ows, with the upper limit being proportional to
1=�. Thus, one can match the extensional viscosity ratios of the Giesekus model to that of
the FENE-P by simply adjusting the � and L parameters. We use the standard form of the
Giesekus model which assumes an in�nite polymer extensibility. It can therefore be considered
a limiting case of the more general model, the FENE-P/Giesekus model [33], the other limit
being the FENE-P model which corresponds to �nite extensibility but isotropic mobility.
By performing the KL analysis on the Giesekus model with �=1=900, which is a small
value suitable for semi-dilute solutions, we can directly compare our results against previous
results based on FENE-P data with L=30 since both of these models correspond to the same
extensional viscosity ratio. We note in passing that the Giesekus model has been the model of
choice for describing surfactant micellar solutions under drag reducing conditions in turbulent
channel �ow [34, 35].
Previous results using the Giesekus model in drag reduced turbulent �ows [29, 34, 35] have

shown modest but measurable changes compared to the FENE-P model: the drag reduction is
signi�cantly higher and there are corresponding di�erences in the turbulence statistics which
are compatible with a more drag reducing �uid. Given the interest in modelling more highly
drag reducing �uids and in understanding the details of the underlying turbulence in such
system we o�er here a KL analysis of such �ows for the �rst time. We describe below the
application of the MOS to data sets obtained through DNS of drag reduced turbulence using
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1348 R. A. HANDLER, K. D. HOUSIADAS AND A. N. BERIS

the Giesekus model and, for comparison, a Newtonian case. We �rst give a brief description
of the equations which embody the Giesekus model and the numerical methods that have
been employed in performing the simulations.
A Cartesian (x; y; z) frame of reference is used. The corresponding velocity components

(u; v; w) are made non-dimensional with u∗=
√
(Fh=�) where F is a pressure gradient driving

the �ow in the streamwise direction, h is the channel half-width, and � is the density of the
solution. In these simulations, the pressure gradient is �xed (independent of time) so that the
mass �ux (or volume average velocity) is allowed to vary in time. The spatial coordinates and
time are non-dimensionalized using h and h=u∗, respectively. The pressure, p, is made non-
dimensional using �u∗2 whereas the extra stress, S, due to the polymer is non-dimensionalized
using 	pu∗=h, where 	p is the zero shear-rate polymer viscosity.
Using the above non-dimensionalization, the equations governing the motion of the �uid

are given by

@v
@t
+ v · ∇∇∇v=− ∇∇∇p+ �0

Re
∇2v+

1− �0
Re

∇∇∇ · S+ êx (40)

@S
@t
+ v · ∇∇∇S− S · ∇∇∇v − ( ∇∇∇v)T · S= 1

We
(−S+ �)− �S · S+ D

Re
∇2S (41)

∇∇∇ · v=0 (42)

where (40) is the momentum equation, (41) is the polymer stress evolution equation, (42) is
the continuity equation, and a superscript T signi�es transpose. In these equations v=(u; v; w)
is the velocity, �0 is the ratio of the solvent viscosity, 	s, to the total (solution) zero shear-rate
viscosity, 	s +	p. Additionally, 
=(	s +	p)=� is the zero shear-rate kinematic viscosity of the
solution, Re= u∗h=
 is the Reynolds number, We= �u∗=h is the Weissenberg number where
� is the polymer relaxation time, �= ∇∇∇v+( ∇∇∇v)T is the shear-rate tensor, êx is a unit vector
in the x direction which acts as a constant driving pressure, � is the mobility, and D is a
di�usivity. The importance and e�cacy of including the term involving the di�usivity in the
evolution equation for the polymer stress has been discussed in detail in Reference [27] and
will not be further discussed here.
In the present work, direct numerical simulations of one Newtonian and three viscoelastic

cases have been performed. Given the complexity of the problem to be solved, it is very
important to minimize all possible reasons that can distort the DNS results. Therefore, special
attention is given to the spatial resolution of the computational grid, and the computational
domain size (Lx and Lz). The chosen numerical values of these parameters are justi�ed by
Housiadas and Beris [27], where a detailed discussion can be found. Brie�y, we have chosen
a computational grid resolution which lies at the borderline between low accuracy and highly
time-consuming simulations. In addition, the computational domain size has to be big enough
to allow the largest structures of the �ow to develop (viscoelastic structures are larger than the
Newtonian ones). We have also been careful to insure that the �ow has reached a statistically
steady state in all simulations reported here.
The simulation conditions are as follows. For all cases a zero shear-rate friction Reynolds

number of 180 has been chosen, the computational box size is 9× 2× 4:5 in the x, y, and z
directions, respectively, and the mesh resolution is 96× 97× 96 in those directions. The non-
linear terms in (40) and (41) were fully dealiased in the x–z plane using a 144× 97× 144
grid according to the standard three-halves rule. The total integration time required to achieve
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a statistically steady state is 60 computational units for the Newtonian case, and 80 com-
putational time units for the viscoelastic cases. The rheological conditions are: �0 = 0:9 and
�=1=900 while the numerical di�usion parameter is D=3:25. As mentioned above, the value
for � was chosen so as to enable the simulation of a semi-dilute system that exhibits the same
extensional resistance as a �uid modelled with a FENE-P model with L=30, thus enabling
comparisons with previous results [12]. The e�ect of viscoelasticity on the �ow is studied by
increasing the Weissenberg number from zero in the Newtonian case to 25, 50, and 125 in
the three viscoelastic cases.

4. RESULTS

4.1. Turbulence statistics

The statistics for the turbulence were obtained from 50 statistically independent realizations
in each case. Representative statistics are given in Figures 1–3. The purpose here is to present
a sample of the statistics for the Giesekus model though our interest is not to go into detail
regarding the interpretation of these results. Such extensive interpretations have been made
elsewhere for the Newtonian case [36] and in References [28–31] for the FENE-P model.
As we note below, the results for the Giesekus model show trends which are quite similar
to those found for the FENE-P model. On the other hand, it is important to point out that
the Giesekus model predicts a non-zero (negative) second normal stress di�erence which is

0
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0.1 1 10 100

U
+

y+

WE = 0
WE = 25
WE = 50

WE = 125
U+= 2.5ln(y+) +5.5

Figure 1. Mean streamwise velocity pro�les where U+ is the mean streamwise velocity
made non-dimensional with u∗, and y+ =yh=
.
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Figure 2. Rms pro�les for the streamwise (urms), wall-normal (vrms), and spanwise (wrms)
components of the velocity made non-dimensional by u∗.

Figure 3. Rms streamwise vorticity pro�les made non-dimensional by u∗ and h.

in contrast to the FENE-P model which predicts no second normal stress di�erence. Negative
second normal stress di�erences have been associated in the past with enhancement of �ow
instabilities [37, 38]. We attribute to those di�erences the modest, but sizeable di�erences in

Published in 2006 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1339–1360



KL REPRESENTATIONS OF TURBULENT CHANNEL FLOWS 1351

turbulence properties (compared to the FENE-P model) that we have mentioned in Section 3
above.
In Figure 1 the mean velocity pro�les are shown using standard wall variable scaling.

For the Newtonian case (We=0), the velocity pro�le behaves according to the standard
logarithmic law of the wall as expected. The bulk Reynolds number, Reb =Ubh=
, where
Ub is the bulk (or volume average) velocity, is 2808 and the centreline Reynolds number,
Recl =Uclh=
, where Ucl is the centreline velocity, is 3278. This is in good agreement with
the results of Dean [39] which are Reb = 2771, and Recl = 3209. In the viscoelastic cases, it
is evident that the mass �ux increases as the Weissenberg number increases with the bulk
Reynolds numbers being 3497, 3748, and 4273 for We=25, 50, and 125, respectively. The
corresponding drag reduction values are 23, 38, and 58% which were obtained using the
relations derived by Housiadas and Beris [40].
The root mean square (rms) pro�les for the three components of velocity are given in

Figure 2. It is evident, as in the previous work cited above involving the FENE-P model, that
as We increases the rms intensity maxima for each component move farther from the wall,
the magnitude of the peak for the rms value of u increases, and the spanwise and vertical rms
values are suppressed. In Figure 3, the rms pro�les for the streamwise component of vorticity
are given. Again, as shown in previous work with the FENE-P model, the streamwise vorticity
�uctuations are signi�cantly decreased in amplitude with their maxima moving farther from
the wall as the Weissenberg number increases. Since the streamwise vorticity pro�les have
been interpreted as indicating the presence of streamwise oriented vortices [41–43], these
statistics are clearly indicative of a suppression of the strength and also an increase in the
vertical extent of these characteristic �ow structures.

4.2. Karhunen–Loeve results for drag reduced turbulence using a Giesekus model

We have applied the MOS as described in Section 2.4 to the turbulent data sets described
above. Here we de�ne �I , I =1; 2; 3; : : : as the eigenvalue sequence ranked in decreasing
order regardless of the values of n, m or q. In computing the energies associated with each
eigenvalue, we have taken into account the degeneracies associated with the reality and sym-
metries of the �ow (see Reference [12]). In the present case we concentrate on the �rst 104

eigenvalues, though the calculations yield a total of ≈ 4× 105 eigenvalues. The spectrum of
the eigenvalues is shown in Figure 4, starting with the second most energetic eigenvalue, �2.
The most energetic eigenvalue, �1, corresponds to an eigenfunction which represents the mean
pro�le for the streamwise velocity component thereby leaving all other modes to represent
deviations from the mean. The spectra shown in Figure 4 clearly indicate that for the Giesekus
model, as We increases, the energy for the lowest modes (say I¡200) increases. The oppo-
site is true for the highest modes where increased We results in a decrease in energy. We
also include the curve I−11=9, which has been shown (see Reference [44]) to represent the
inertial subrange in Newtonian turbulence. These results bear some similarity to those exhib-
ited by turbulent channel �ow using the FENE-P model [12, 13]. More speci�cally, we see
the very signi�cant strengthening of the low wavenumber eigenmodes and the relative weak-
ening of the higher wavenumber ones, indicating a strengthening of the coherent structures
that is generic, independent of the details of the viscoelastic model used, provided that the
same essential physics is captured, as, for example, through the matching of the extensional
viscosity and the Weissenberg numbers. On the other hand, some peculiarities in the previous
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Figure 4. Eigenvalue spectra over a range of Weissenberg numbers for the Giesekus model.

KL results [12], such as a sudden decrease in the eigenvalue magnitude after the seventh
eigenvalue, are not seen here indicating possibly that the dropo� was a model-dependent
secondary e�ect.
In Appendix A, we list in Tables AI–AIV, the 15 most energetic modes for each

Weissenberg number. For each triplet (n;m; q) we list the eigenvalues, and the energy fraction
FI = �I =E, where E=

∑Ne
I=2 �I , and Ne is the total number of eigenvalues. We also list the

cumulative energy sum SJ ; J =1; 2; : : : where SJ =
∑J+1

I=2 FI . The tables reveal that the most
energetic modes tend to be those with little streamwise dependence (e.g. n=0 or 1). Modes
with n=0 have been referred to as roll modes [3, 4] since they essentially represent in�nitely
long counter-rotating vortices, while those modes with streamwise dependence are referred to
as propagating since they may be associated with wave-like behaviour. These modes have
also been shown to be associated with the so-called hairpin, or streamwise oriented eddies
[5] that have been found in wall-bounded turbulence.
In Figure 5 we plot the so-called KL dimension of the �ow, de�ned as that modal number

for which the cumulative energy sum reaches 90%. Thus, when the KL dimension is low,
the �ow can be considered more ordered than a �ow with higher dimension since any given
amount of �ow energy is distributed over fewer modes. It is evident from Figure 5 that the
KL dimension decreases more than an order of magnitude from 4730 at We=0 to 268 at
We=125, with the most rapid decrease occurring from We=0 to We=50. In this range,
the KL dimension appears to decrease nearly exponentially as exhibited by the almost linear
decrease of dimension number with We on the semi-log plot of Figure 5.
Lastly we present, in Figures 6–9, both the eigenfunctions and their physical space

representations for the most energetic modes in the case We=0 and for the case of highest
viscoelasticity, We=125. In each of these cases the most energetic modes are the so-called
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Figure 5. Dependence of KL dimension on Weissenberg number for the Giesekus model.

Figure 6. The eigenfunction for (n; m; q)= (0; 2; 1) for the Newtonian case (We=0).

roll modes as can be seen by referring to the tables in Appendix A. The eigenfunctions for
We=0 for (n;m; q)= (0; 2; 1) which contains about 1.3% of the energy, and for We=125
for (n;m; q)= (0; 1; 1) which contains 10.6% of the energy, are shown in Figures 6 and 7,
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Figure 7. The eigenfunction for (n; m; q)= (0; 1; 1) for (We=125).

Figure 8. The vector �eld for the eigenfunction for (n; m; q)= (0; 2; 1) for
the Newtonian case (We=0) in the z–y plane.

respectively. In these �gures we need show only the real part of the streamwise and vertical
velocity components of the eigenmodes and the imaginary part of the spanwise velocity com-
ponents since, as shown in Appendix B, in cases for which n=0, such a decomposition can be
made. These results show quite clearly that for We=125, the streamwise component for the
(0; 1; 1) eigenmode peaks signi�cantly farther from the wall compared to the streamwise com-
ponent of the (0; 2; 1) mode for We=0. In addition, the vertical and spanwise components are
noticeably suppressed in amplitude compared to the streamwise component in the We=125
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Figure 9. The vector �eld for the eigenfunction for (n; m; q)= (0; 1; 1) for (We=125) in the z–y plane.

case. These two trends are clearly re�ected in the overall statistics for both �ows as shown
above. In addition, we show the vector �elds for these eigenmodes (�1(y; z);�2(y; z);�3(y; z))
(see Appendix B) in the z–y plane in Figures 8 and 9.
In each case, it is clear that these eigenmodes represent counter-rotating vortices (two pairs

in the (0; 2; 1) case and one pair in the (0; 1; 1) case) and that the vortices in the We=125 case
are signi�cantly larger in their vertical extent than those for We=0. We note that although
these modes lack streamwise dependence, they are fully three-dimensional in the sense that
all three velocity components are non-zero. Therefore, due to the existence of a streamwise
velocity component, the particle paths associated with these vortices can be shown to be
helical in nature. These results con�rm the general view of viscoelastic turbulence which is
that it consists of larger more energetic scales compared to their Newtonian counterparts at
the same Reynolds number.

5. SUMMARY AND CONCLUSIONS

The KL method has recently been used extensively to describe and interpret complex three-
dimensional turbulent �ows, and to construct low-order models for these �ows. The standard
method for performing the analysis, the so-called direct method (DM), typically involves
solving a spatial eigenvalue problem on non-uniform grids. Here we have shown that the
problem can be easily reformulated in terms of a temporal eigenvalue problem using the
so-called method of snapshots (MOS).
It is shown that the MOS, although it is mathematically equivalent to the DM, a�ords some

computational advantages. First, the correlation matrix Cnm in the MOS has purely scalar
components compared to the tensor nature of Rij needed for the DM. More importantly, the
weight functions, which are required in the DM, are completely avoided in the MOS. These
facts have two main consequences: (1) The construction of Cnm does not require the assembly
of a matrix of matrices as in the DM, and (2) In the MOS no issues arise as to the singularity
of the weight functions at the boundaries. In the MOS, since weights are entirely avoided in
the construction of Cnm, any boundary conditions satis�ed by the �ow will be automatically
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preserved in the eigenfunctions. It is also straightforward to incorporate the �ow symmetries
discussed above into the MOS. It is hoped that the MOS as formulated here will be considered
in some cases as a useful alternative to the direct approach.
We have applied the three-dimensional version of the MOS to the case of viscoelastic

turbulence described by a Giesekus model, which has the capability to describe non-dilute
systems. The results reveal that strong visocelasticity reduces the dimensionality of the tur-
bulence by more than an order of magnitude. The energy in the largest turbulent scales are
substantially enhanced at the expense of the smaller dissipative scales. These trends were
quite similar to the results obtained earlier using a FENE-P model, although here we were
able to perform a KL analysis for the case (We=125) in which the drag reduction was
large (58%). We have shown features that are generic to viscoelastic turbulent �ows (the
substantial strengthening of the low wavenumber modes and a signi�cant decreased dimen-
sionality) and have therefore shown the usefulness of performing such KL analyses using the
MOS method described above. Moreover, we have also looked at the spatial structure of the
dominant eigenmodes in both the Newtonian case and in the case of the highest Weissenberg
number. These modes turn out to be those with no streamwise variation. The results show
that the modes in the viscoelastic case describe counter-rotating streamwise oriented vortices
with more energetic (relative to the Newtonian case) streamwise velocity �uctuations and less
energetic wall-normal and spanwise velocity �uctuations.

APPENDIX A

Tables (Tables AI–AIV) for the 15 most energetic Karhunen–Loeve modes for We=0, 25,
50, 125.

Table AI. First 15 KL modes for Re=180 and We=0 (Newtonian case). De�nitions of
the energy fraction and energy sum are given in Section 4.2. Index 1 represents the most

energetic eigenmode, excluding the (0; 0; 1) mode which represents the mean �ow.

Index � n m q Energy fraction Energy sum

1 0:46571E− 01 0 2 1 0:13120E− 01 0:13120E− 01
2 0:45501E− 01 0 3 1 0:12819E− 01 0:25939E− 01
3 0:40425E− 01 1 3 1 0:11389E− 01 0:37328E− 01
4 0:38242E− 01 1 2 1 0:10774E− 01 0:48102E− 01
5 0:34965E− 01 1 4 1 0:98507E− 02 0:57953E− 01
6 0:31186E− 01 0 2 2 0:87859E− 02 0:66739E− 01
7 0:30995E− 01 0 4 1 0:87320E− 02 0:75471E− 01
8 0:29167E− 01 1 4 2 0:82171E− 02 0:83688E− 01
9 0:29105E− 01 1 1 1 0:81998E− 02 0:91888E− 01
10 0:28136E− 01 1 3 2 0:79268E− 02 0:99814E− 01
11 0:27082E− 01 0 3 2 0:76299E− 02 0:10744E + 00
12 0:25975E− 01 1 2 2 0:73179E− 02 0:11476E + 00
13 0:25746E− 01 0 1 1 0:72533E− 02 0:12202E + 00
14 0:24663E− 01 0 5 1 0:69481E− 02 0:12896E + 00
15 0:24335E− 01 1 6 1 0:68559E− 02 0:13582E + 00
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Table AII. First 15 KL modes for Re=180 and We=25 (Giesekus model). De�nitions of
the energy fraction and energy sum are given in Section 4.2. Index 1 represents the most

energetic eigenmode, excluding the (0; 0; 1) mode which represents the mean �ow.

Index � n m q Energy fraction Energy sum

1 0:17726E + 00 0 1 1 0:35140E− 01 0:35140E− 01
2 0:16373E + 00 0 1 2 0:32457E− 01 0:67597E− 01
3 0:16199E + 00 0 3 1 0:32113E− 01 0:99710E− 01
4 0:15290E + 00 0 2 1 0:30311E− 01 0:13002E + 00
5 0:14425E + 00 0 4 1 0:28596E− 01 0:15862E + 00
6 0:10797E + 00 0 3 2 0:21404E− 01 0:18002E + 00
7 0:10360E + 00 0 2 2 0:20538E− 01 0:20056E + 00
8 0:98583E− 01 0 4 2 0:19543E− 01 0:22010E + 00
9 0:74207E− 01 1 3 1 0:14711E− 01 0:23481E + 00
10 0:72315E− 01 0 5 1 0:14336E− 01 0:24915E + 00
11 0:66167E− 01 1 2 1 0:13117E− 01 0:26227E + 00
12 0:64748E− 01 1 1 1 0:12835E− 01 0:27510E + 00
13 0:58511E− 01 1 2 2 0:11599E− 01 0:28670E + 00
14 0:56570E− 01 0 5 2 0:11214E− 01 0:29791E + 00
15 0:52762E− 01 1 1 2 0:10459E− 01 0:30837E + 00

Table AIII. First 15 KL modes for Re=180 and We=50 (Giesekus model). De�nitions of
the energy fraction and energy sum are given in Section 4.2. Index 1 represents the most

energetic eigenmode, excluding the (0; 0; 1) mode which represents the mean �ow.

Index � n m q Energy fraction Energy sum

1 0:47441E + 00 0 1 1 0:79770E− 01 0:79770E− 01
2 0:42989E + 00 0 2 1 0:72284E− 01 0:15205E + 00
3 0:23130E + 00 0 3 1 0:38893E− 01 0:19095E + 00
4 0:21227E + 00 0 3 2 0:35692E− 01 0:22664E + 00
5 0:19946E + 00 0 2 2 0:33539E− 01 0:26018E + 00
6 0:15793E + 00 0 1 2 0:26555E− 01 0:28673E + 00
7 0:12692E + 00 0 4 1 0:21341E− 01 0:30807E + 00
8 0:10527E + 00 0 4 2 0:17701E− 01 0:32578E + 00
9 0:92898E− 01 0 1 3 0:15620E− 01 0:34140E + 00
10 0:92736E− 01 1 2 1 0:15593E− 01 0:35699E + 00
11 0:88440E− 01 1 3 1 0:14871E− 01 0:37186E + 00
12 0:88389E− 01 0 5 1 0:14862E− 01 0:38672E + 00
13 0:86999E− 01 1 1 1 0:14629E− 01 0:40135E + 00
14 0:78246E− 01 1 1 2 0:13157E− 01 0:41451E + 00
15 0:76832E− 01 1 2 2 0:12919E− 01 0:42743E + 00

APPENDIX B: PHYSICAL SPACE REPRESENTATION OF THE EIGENFUNCTIONS
FOR WHICH n=0

We de�ne the physical space representation of the eigenfunctions, �j(y; z), for which there
is no streamwise dependence (n=0) by

�j(y; z)=�
(0;m;q)
j (y)eikmz +�(0;−m;q)j (y)e−ikmz (B1)
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Table AIV. Eigenvalues for �rst 15 KL modes for Re=180 and We=125 (Giesekus
model). De�nitions of the energy fraction and energy sum are given in Section 4.2.
Index 1 represents the most energetic eigenmode, excluding the (0; 0; 1) mode

which represents the mean �ow.

Index � n m q Energy fraction Energy sum

1 0:70320E + 00 0 1 1 0:10597E + 00 0:10597E + 00
2 0:56677E + 00 0 3 1 0:85406E− 01 0:19137E + 00
3 0:48032E + 00 0 2 1 0:72379E− 01 0:26375E + 00
4 0:26682E + 00 0 2 2 0:40208E− 01 0:30396E + 00
5 0:20963E + 00 0 0 2 0:31589E− 01 0:33555E + 00
6 0:18085E + 00 0 4 1 0:27253E− 01 0:36280E + 00
7 0:16580E + 00 0 3 2 0:24985E− 01 0:38778E + 00
8 0:15458E + 00 1 2 1 0:23294E− 01 0:41108E + 00
9 0:13646E + 00 0 0 3 0:20563E− 01 0:43164E + 00
10 0:12297E + 00 0 1 2 0:18530E− 01 0:45017E + 00
11 0:10906E + 00 0 5 1 0:16434E− 01 0:46660E + 00
12 0:10365E + 00 0 1 3 0:15618E− 01 0:48222E + 00
13 0:10324E + 00 1 2 2 0:15558E− 01 0:49778E + 00
14 0:93881E− 01 1 1 1 0:14147E− 01 0:51193E + 00
15 0:90418E− 01 1 3 1 0:13625E− 01 0:52555E + 00

where �(0;m;q)j are the Karhunen–Loeve eigenfunctions evaluated for n=0. Since the original
eigenfunctions �n;m;qj have been computed from real data and since a spanwise re�ectional
symmetry has been imposed via (28) it can easily be shown that the eigenfunctions satisfy:

�(0;m;q)j =�(0;−m;q)j ; j=1; 2; 3 (B2)

and

�(0;m;q)1 =�(0;−m;q)1

�(0;m;q)2 =�(0;−m;q)2

�(0;m;q)3 =−�(0;−m;q)3

(B3)

where the dependence on y is suppressed in (B2) and (B3). It follows from (B2) and (B3)
that �(0;m;q)1 and �(0;m;q)2 are real and �(0;m;q)3 is imaginary, and that therefore the physical space
representation of the eigenfunctions with n=0 can written using (B1) as

�1(y; z) = 2×RE[�(0;m;q)1 (y)] cos(kmz)

�2(y; z) = 2×RE[�(0;m;q)2 (y)] cos(kmz)

�3(y; z) =−2× IM[�(0;m;q)3 (y)] sin(kmz)

(B4)
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